Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis

نویسندگان

  • Faiza M Kalfalah
  • Elke Berg
  • Morten O Christensen
  • René M Linka
  • Wilhelm G Dirks
  • Fritz Boege
  • Christian Mielke
چکیده

To maintain genome stability, the thousands of replication origins of mammalian genomes must only initiate replication once per cell cycle. This is achieved by a strict temporal separation of ongoing replication in S phase, and the formation of pre-replicative complexes in the preceding G1 phase, which "licenses" each origin competent for replication. The contribution of the loading factor Cdc6 to the timing of the licensing process remained however elusive due to seemingly contradictory findings concerning stabilization, degradation and nuclear export of Cdc6. Using fluorescently tagged Cdc6 (Cdc6-YFP) expressed in living cycling cells, we demonstrate here that Cdc6-YFP is stable and chromatin-associated during mitosis and G1 phase. It undergoes rapid proteasomal degradation during S phase initiation followed by active export to the cytosol during S and G2 phases. Biochemical fractionation abolishes this nuclear exclusion, causing aberrant chromatin association of Cdc6-YFP and, likely, endogenous Cdc6, too. In addition, we demonstrate association of Cdc6 with centrosomes in late G2 and during mitosis. These results show that multiple Cdc6-regulatory mechanisms coexist but are tightly controlled in a cell cycle-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redundant and differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells.

When human cells enter S-phase, overlapping differential inhibitory mechanisms downregulate the replication licensing factors ORC1, CDC6 and Cdt1. Such regulation prevents re-replication so that deregulation of any individual factor alone would not be expected to induce overt re-replication. However, this has been challenged by the fact that overexpression of Cdt1 or Cdt1+CDC6 causes re-replica...

متن کامل

CUL4B promotes replication licensing by up-regulating the CDK2–CDC6 cascade

Cullin-RING ubiquitin ligases (CRLs) participate in the regulation of diverse cellular processes including cell cycle progression. Mutations in the X-linked CUL4B, a member of the cullin family, cause mental retardation and other developmental abnormalities in humans. Cells that are deficient in CUL4B are severely selected against in vivo in heterozygotes. Here we report a role of CUL4B in the ...

متن کامل

Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus.

In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show...

متن کامل

The RLF-B component of the replication licensing system is distinct from Cdc6 and functions after Cdc6 binds to chromatin

Replication licensing factor (RLF) is an essential initiation factor that can prevent re-replication of DNA in a single cell cycle [1] [2]. It is required for the initiation of DNA replication, binds to chromatin early in the cell cycle, is removed from chromatin as DNA replicates and is unable to re-bind replicated chromatin until the following mitosis. Chromatography of RLF from Xenopus extra...

متن کامل

PIP-box-mediated degradation prohibits re-accumulation of Cdc6 during S phase.

Cdc6 and Cdt1 initiate DNA replication licensing when cells exit mitosis. In cycling cells, Cdc6 is efficiently degraded from anaphase onwards as a result of APC/C-Cdh1 activity. When APC/C-Cdh1 is switched off again, at the end of G1 phase, Cdc6 could thus re-accumulate, risking the re-licensing of DNA as long as Cdt1 is present. Here, we carefully investigated the dynamics of Cdt1 and Cdc6 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015